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Abstract. Spectral properties associated with the deformation of tori and the transition to 
chaos in near-integrable Hamiltonian systems are studied. Information about the COnStNC- 
lion of tori is provided by studying the evolution of the integrals o f  the unperturbed system 
when a perturbation is added. We show that the IOW band of the power spectrum converges 
exponentially for regular trajectories but we pass abruptly lo I / f"  divergence when chaos 
occurs. These results are valid for systems of two or more degrees of freedom and provide 
a clear distinction between regular and chaotic motion. 

1. Introduction 

Power spectral analysis has often been applied to the study of nonlinear dynamical 
systems. Multifrequency dynamical variables which exhibit quasiperiodic or periodic 
motion are characterized by few major sharp peaks in their spectrum located at integer 
combinations of the fundamental frequencies, in contrast to the broad features which 
emerge in the case of turbulence and chaos [l-41. The transition to chaos by the period 
doubling route can be studied by inspecting the birth of peaks in the spectrum and 
their position in relation to the initial frequencies (e.g. see [SI) while intermittency, 
which arises in classical Hamiltonian systems, results in an incoherent superposition 
of frequencies [6]. Power spectral analysis is also one of the most useful techniques 
for semiclassical or quantum studies of molecular dynamics where molecular spectra 
are obtained by classical Hamiltonian trajectories [7-91. 

A regular (quasiperiodic) trajectory has a power spectrum of the form [SI 

where m = ( m ,  , . , . , m.) E Z" and o is the vector of the fundamental frequencies. From 
(1) it is evident that the power spectrum consists of a set of discrete peaks which 
appear at positions Cl = m o .  Only a few of them are of significant amplitude; however, 
they are distinct and denote that the trajectory is regular. In the case of a chaotic 
trajectory the spectrum becomes irregular and shows a continuous distribution of peaks 
[IO-121. It has also been shown that in some cases chaotic trajectories of Hamiltonian 
systems exhibit l/f" noise with a - 1 [13,14] (f corresponds to Cl in our notation), 
and a statistical description of this phenomenon has been given for systems of two 
degrees of freedom. 
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In the present paper we study from a classical point of view the distribution of the 
low frequencies for regular trajectories which lie on invariant tori of dimension n. We 
show that P(fi) converges exponentially to zero as f i -0  but, in a chaotic region, the 
power spectrum lacks such a convergence. Numerical results show that the spectrum 
either saturates to a finite value for fi = 0 or diverges as l/f". We consider near. 
integrable systems which are described by Hamiltonians of the form 

H(P,q)=Ho(P,qj+EH,(P, 9) (2) 
where Ho is the integrable part and E H ,  denotes the perturbation. Although the 
behaviour of such systems with n = 2 degrees of freedom has been studied in detail, 
for systems of n > 2 there are many open questions. KAM theorem ensures that under 
small perturbations most of the tori, where quasiperiodic trajectories lie, persist even 
for n 3 3 but the mechanism of the break-up of resonant ton and the topological 
structure of the phase space is not completely understood [IS]. The aim of this paper 
is io ejiiiaei spei-iiai properks oftiaJeciVries in such sysiems which can provide some 
information about the construction of tori and their break-up. Our study is based on 
the Fourier spectral analysis of functions I ,  = J ( q ,  p )  which are integrals of motion for 
the integrable part Ho. Since these functions are constants in the unperturbed system 
during time evolution on a particular trajectory, their variation when a perturbation 
is added is related exclusively to the deformation of tori under the perturbation. We 
show that the power spectrum of 4 Is re!a!ed to !he effect of sma!! denominztors an 
the construction of a torus. Its behaviour as f i + O  allows a sharp distinction between 
regular and chaotic motion even for systems of many degrees of freedom and provides 
some information about the transition from the first type of motion to the second. 

2. Variation of the integrals and spectral analysis 

We consider near-integrable Hamiltonian systems of the form (2) with E small. The 
integrable part Ho(p, q )  possesses n integrals J ( p ,  q )  in involution, i.e. the following 
conditions are satisfied: 

[ 4 ,  HoI=O [ J ,  Ij] = 0 Vj,  i =  1 , .  . . , n (3) 
~ ~ ~ , ~ -  r 1 >~ ~ ~. wnere 1. J oenores ihe Poisson brackei. 

For E = 0, each J assumes a constant value c, on a specific trajectory. The cnnstants 
cj label the torus where the trajectory lies, i.e. every torus corresponds to a vector 
c = ( c , ,  c 2 , .  . . , c.) by an injection. For a small hut non-zero E, J are, in general, no 
longer constants (except for the perturbed Hamiltonian itself) but vary in time according 
to the equation 

dJ /d t  = [ J ,  HI = E[J, HJO+O(Ei) (4j 

where the subscript 0 denotes that the corresponding quantity is computed in the 
unperturbed system. For time intervals of the order of 1,  I ,  vary slowly and this variation 
is of the order of E, providing the possibility tn apply averaging methods [16-181. 
However, the variation of J may become considerable for long time intervals ( t  > I /&) .  
For the case of n = 2, the tori divide the three-dimensional level manifold where the 
trajectories lie. Therefore, since for small E the deformation of most tori is very Small, 
lj = J (  t )  vary little over an infinite time interval. For n > 2 the tori do not divide the 
level manifold and, in this case, Nekhorosev's theorem [19] provides an exponential 
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estimation for the time interval in which the variation of the integrals in the perturbed 
system is small even inside thin stochastic layers. 

Next we consider as such integrals the actions of Ho and write the Hamiltonian 
(2) in action-angle variables I, 4, in the form 

H =  H o ( I ) +  & H I ( I ,  @ ) + O ( E ' )  (5 )  

where H, is mod 27r with respect to q5. The equations of motion u p  to terms O ( & )  are 

~ ; = - E a H l ! d b ;  (6a)  

~ , = o , ( I ) + ~ d H , / a l , .  ( 6 6 )  

H, =I: hm(I)  exp(imq5). (7)  

H ,  can be expanded in multiple Fourier series with respect to 4: 

m 

By substituting (7) in the equations of motion and integrating we obtain 1201 

mihm 
m o  

1; = E -exp(imwt)+O(E*). 

The above expression cannot he considered an asymptotic solution for the variation 
of 4,  since it contains small denominators and its convergence is doubtful. This problem 
is also present in the power spectrum of 4 ,  which has the form 

The denominator mw may take arbitrarily small values so, from a first examination, 
significant amplitudes at very low frequencies will appear. The terms of higher order 
also contain such denominators and may play an important role in the construction 

frequencies (a -* 00). The structure of the power spectrum depends on the values which 
the terms h,/mo may take. Their significance is apparent in classical perturbation 
techniques. Consider, for example, the sequence of transformations 1211 

SI( I , ,  4):  I, 6 --f I , ,  4' 
S*(I" ,  4 ' ) :  I ' ,  q5'+ I", 4'' 
etc. If we take S1 = 1'4 + ES: and expand Si in multiple Fourier series with respect to 
4, its coefficients will be SL =ih,/mo. In the same way, similar terms will appear 
in the higher order terms O ( e n )  of the spectrum. So with this procedure new tori are 
constructed for the perturbed trajectories which will support quasiperiodic motion 
with frequencies close to the unperturbed ones. The validity of this procedure depends, 
however, on the convergence of the series for every generating function S' and on the 
convergence of the sequence of transformations. We can observe that the behaviour 
of the sequence of S' is reflected by the structure of the power spectrum (9). 

2.1. Power spectrum on invariant tori 

According to KAM theory most of the invariant tori of the unperturbed system persist 

is quasiperiodic and the frequency vector w satisfies the condition [21] 

ef the spectr??rt?. since &(!I BIZ smeat!: F;nctiens, P,(fi) convr:ge !G zer9 at high 

such that H ( I ,  ~ ~ ) = H ' ( I ' ) + E ~ H , ( Z ' , ~ ~ ' )  

such that H ( I , ~ ~ ) = H " ( I " ) + E ~ H , ( I " ,  q5") 

..-A-- tL- mrr..rhnrin- 0-A 97- A-1.7 c1:nhtl.r Anfnrmnr l  Tlrn t - n ; - r t n n r  nn r . r n h  n tnr..- 
LA.."... L1'S p,,,LA."P,,",, P l l U  Y L C  Y..'J " U 6 . L L . J  "..U .... *U. I... , 'YJ ' -LY.J  Y.. l Y I , ,  0 L Y L L A I  

/mol>  klml-'"+'' Iml=lmll+lm21+.. .+lm./ (10) 
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where k is a fixed positive constant. Also, if H ,  is analytic, the Fourier coefficients h, 
decrease exponentially with Iml, i.e. the following condition holds: 

G Voyafzis and S Ichtiaroglou 

lh,lS M exp(-lmlp) (11) 
with p > 0 and M > 0 such that IH,l< M. By taking into account the above inequalities, 
it can be proved that the terms Ih,,,/mwl decrease rapidly in geometric progression 
[21]. The same behaviour is true for the terms Im,h,/mwl since m, increases linearly. 
The convergence of the sequence with respect to E "  is also guaranteed by Kolmogorov's 
quadratic convergence. So there are terms in (9) at frequencies n= mu which may 
approach zero for large /mi, but this implies that the corresponding ?(Cl) converge 
rapidly to zero. 

An estimation about the convergence of the power spectrum as n+O and the 
distribution of the frequencies can be found by keeping in (10) only the terms of 
the order of E ~ .  We define the 'frequency set' r, ={fila = mo, m E Z"}c R, where o 
is  .La ,."..,.+"..* ..̂ .. "F ..,.-,:-..I-- I ... :at. :--------..-^!-I.. 

components. The map f :  m E Z" + Cl E r, is a bijection so we define the continuous 
function A ( 0 )  in r, which is related to ?(a), as follows: 

uic CVIIIL~_ILI ~ L G ~ U C U C J  YCCLUL VL 2 paiucuia WIUJ W L L ~  ~ ~ ~ ~ u ~ ~ ~ ~ ~ ~ c i i i ~ u ~ a . v I c :  

where m is the image of Cl under the map f - ' .  
By taking into account (11) and that Iml2lm,/, we obtain 

Iml exp(-lmlp))* 
R 

A(n)  S (EM 

Since the exponential function tends faster to infinity than a linear one, we can find 
an m,(S>O) such that Iml<exp(lmlS), Vlml>lmol. We can select O < S < p  and also 
those m with Iml>lm,l such that O<Imwl<lmnw/ or equivalently O<Ci<O,. So in 
the frequency domain (0, Cl,) we have 

From (10) we take Iml>(k / f l ) '+"  and by substituting in the above expression we 
finaiiy get 

n A(n) s (EM 

w h e r e p = n + l  and a = k l / P ( p - S ) > O .  Sincep=i11/P+Oandexp(-1/p)=o(p4) for 
R + 0 and for all q E N [22], the above relation guarantees an exponential convergence 

is related to the parameter k, which depends on the nearby resonance and the number 
of degrees of freedom. 

We mentioned above that 4(n) converges to zero for high frequencies, so the 
power spectrum is bounded in the whole frequency domain. By taking into account 
inequalities (10) and (11) and since 1>  k >  E"* [16] we get 

&. fIlr +ha I,...r f-nn..n-n. I.....A -f thp -n.,lPI onnrtr.,m Tho m+e tho P ~ ~ V P ~ D C ~ P C  
L" ,A,." 1". L l l b  . " " - " c ~ Y c L , ' J  vaLI,u "L L l l b  F"".,, "Y.,"'.YL'.. .... " ". ...- --...-.e"..l- 

A ( ~ ) + G  Me- lmlP lm(p+'12=I~ML( lml )12 .  (14) 

The function L:Zt+ R+ has an upper bound Lo. If we assume Lo and M to be of 
the order of 1, we conclude that A ( 0 )  does not exceed O ( E ) .  
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It is obvious from the definition of A(R) that if R = 0(1 )  then A(n)  S O ( E ~ ) .  So 
significant peaks may appear only for low frequencies R,  = lo = O( E )  with I I )  small. 
Such low frequencies may appear near a resonant torus where k, j w ,  = kJo,  =. . . = 
k. jw. ,  or equivalently n - 1 independent relations of the form m'o = 0, i = 1 , . . . , n - 1, 
are satisfied. In  the neighbourhood of a resonance, we write the previous relations as 
m'o =biz, b. = O( 1 )  E R, so there exist terms in (9) at n - 1 low frequencies of O ( E )  
and their linear combinations. No other frequencies with significant amplitudes may 
appear and this can he shown as follows. Consider a small frequency R, = Iw = be, 
where b = O( 1) and I is an integer vector linearly independent of all mi. We form the 
system 1 z;  m: . . .  1; j/!i\ - - 

\-;' -;' ... 

mi . . .  

E or M w  = BE. . . . . . . . . . . . . 
11.1 c r . 2  ... -"-I / lGJ \"a-'l h 

Since M is a non-singular integer matrix, with Idet(M)I* 1, we can solve with respect 
to w :  

The frequencies w of the unperturbed torus are of the order of 1 so the elements of 
adj(M), which are combinations of integer numbers, should be of the order of 1 / ~ .  
Under the assumption that m; are small integers, we conclude that the components of 
I must be of the order of 1/E, i.e. they are very large integers, and consequently the 

So the evolution of 4 when the motion takes place on an invariant torus does not 
exhibit very slow oscillations with significant amplitudes. Numerical results show that 
the spectrum of 4 on a deformed invariant torus contains only a few main peaks but 
is enriched when a resonance is approached. 

2.2. Power spectrum of I and break-up of tori 

If the perturbation io (2) is very small but non-zero ( e<<  1) the phase space is mostly 
filled by invariant tori but regions of exponentially small measure also exist around 
the destroyed resonant ton of the unperturbed system where the motion is chaotic. 

In the case n = 2 ,  chaotic regions may become considerable by increasing E. The 
break-up of a resonant torus leads, according to Poincart-Birkhoff theorem, to the 
formation on the Poincare section of a chain of islands and a thin stochastic zone 
around the homoclinic webs associated with the hyperbolic periodic orbits. The motion 
in the islands is still regular, but one additional frequency appears corresponding to 
a spiral motion around the unperturbed trajectory. The power spectrum of I on a 
chain of islands is affected by the appearance of new peaks, whose frequency and 
amplitude depend on the number and the order of the islands [23]. Subsequent break-up 
of the islands leads to the formation of higher-order smaller islands and consequently 
in the appearance of new subsequent frequencies in the spectrum. The power spectrum 
is thus enriched and its structure becomes more complicated compared to the spectrum 
along an invariant curve, but it is still discrete and no significant peaks appear as  R + 0. 

corresponding peak at n; =/&I has neg!igih!e amp!itude. 
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In the stochastic region, the trajectories evolve in a random fashion. The long time 
which these trajectories spend in the vicinity of a hyperbolic fixed point results in the 
appearance of low frequencies in the spectrum. It is conjectured that the spectrum of 
a chaotic trajectory corresponds to a continuous set of frequencies. The analysis of 
Noid et a1 [8-111 and Powell [12] exploits mainly this difference, i.e. regular orbits 
have discrete spectra in contrast to chaotic trajectories, which have a continuous 
spectrum. On the other hand, Geisel et a1 1131 showed the existence of l/f noise for 
Hamiltonian chaotic trajectories. The power spectrum of the integrals of motion of 
the unperturbed system also exhibits this feature, which may be a consequence of the 
divergence of the classical perturbation series. The denominators in the expansion (8) 
may take arbitrarily small values since the condition (10) does not hold near a resonance. 
So an irregular continuous distribution of peaks with significant amplitudes appear in 
the low frequency band, which suggests an irregular evolution of 4 indicating that the 
trajectory does not lie on a torus. 

3. Examples 

We demonstrate the previous concepts by applying spectral analysis on the integrals 
I, first to a non-homogeneous quartic potential of n = 2 for purposes of comparison, 
and secondly to an extension of the previous model to n = 3 which describes a system 
of three nonlinear oscillators under a weak coupling. 

Since we focus our interest on the low-frequency domain, numerical integration of 
Hamilton’s equations must be performed over long time intervals. For the following 
examples the particular trajectories were integrated for approximately 8000 time units 
using double precision. For the construction of the power spectra we used FFT routines 
with 4096 sample data analysis selected by interpolation from a periodic-like part of 
[ ( t )  and applying Hanning filter [12]. Since noise, wrap-around pollution and leakage 
cannot be avoided completely, the exponential convergence of the low band may not 
be apparent, but the lack or the presence of significant peaks in this region is enough 
to reveal information on how an invariant torus is affected by the perturbation. A 
log-log scale has been used for all spectra illustrated, in order to emphasize the details 
of the low-frequency domain. 

3.1. Two nonlinear coupled oscillators 

As an example of a system with two degrees of freedom we consider the planar 
Hamiltonian 

H=f(p:+p:)+a(x+y)2+a(x-ky)4 (16) 

which is integrable for k = 1 (separates by a 7r/4 rotation), the second invariant being 

while E = 1 - k is the perturbation parameter. We selected this system as a particularly 
simple one, which at the same time possesses on a single Poincare section most of the 
main features found in a generic Hamiltonian system with n = 2. 

For E = 0, the existence of two stable periodic orbits at x = 0, p x  = 50.5 can be 
shown. These periodic orbits are continued for E > 0 and appear as fixed points 
surrounded by invariant curves on the section. We study the region around the upper 
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fixed point (x = 0, p x  = 0.5) where an invariant curve which corresponds to 1 : 3 reson- 
ance exists. This curve breaks down under the perturbation, giving rise to a Poincart- 
Birkhoff chain of three stable fixed points surrounded by first-order islands and a 
chaotic layer along the homoclinic connections of the three hyperbolic fixed points. 
An enlargement of this area for E = 0.03 is shown in figure 1. 

. .z 
. .  .. :... 

j . .  . 
. .  :.. . , . . .  
.. . ...' , . c n  ;:: . . . 

ii . , ."" '" '  

. O . l  - 0.06 .n.oz x O.M 

Figure 1. Poincarb section around a hyperbolic fixed paint of the I :3 resonance. Letten 
denote the trajectories where the corresponding power spectra have been obtained. 

The power spectrum of I on an invariant curve near the periodic orbit, which 
remains stable under the perturbation, is shown in figure 2(a). We observe only a few 
major peaks at high frequencies. The non-existence of peaks at low frequencies indicates 
that the tori around the periodic orbit have been deformed slightly and may persist 
for larger perturbations (in this case the particular torus breaks up for E > 0.15). This 
is also a typical power spectrum for deformed invariant curves far from significant 
resonances. The invariant curve A (figure 1) is near the 1:3 resonance and, as was 
expected, this torus is subjected to a larger deformation under the perturbation. The 
spectrum of I in figure 2(b) shows a greater number of major peaks at high frequencies, 
in comparison to the preceding case, but the most interesting feature is the appearance 
of many peaks to the right of the spectrum, which means that the corresponding torus 
has been deformed remarkably under the perturbation. 

In figure 3( a )  the power spectrum on the island chain B is shown. This is a first-order 
Poincart-Birkhoff chain at the 1 : 3 resonance. The same significant peaks as in the 
previous case are present, followed by the generation of new peaks around them. A 
sequence of peaks as 0- 0 also arises, indicating a substantial deformation. The island 
C belongs to a second-order chain of four islands formed around the stable fixed 
points at the 1:3 resonance. The power spectrum (figure 3(b)) is enriched by the 
generation of additional notable peaks near every original one. The low band has been 
filled by some significant peaks which show an irregular distribution; however, the 
spectrum seems to converge as 

In figure 3(c) the spectrum of I on the twin chain D at the 3:lO resonance is 
shown. Twin chains are formed when the twist condition of the Poincart-Birkhoff 
theorem does not hold and the rotation number presents an extremum along the 
invariant curves of the integrable system [24, 251. The spectrum is rich but it still 
appears to be discrete. A major peak is apparent near zero but the low-frequency band 
is not filled by considerable peaks. 

+ 0, indicating a regular trajectory. 
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lo.t a l  

O.M1 0.01 0.1 

10-8 

lo.' 

0.01 0.1 n 
Figure 2. Power spectra for trajectories (a )  near the periodic orbit and ( b )  near the 1 : 3  
resonance (trajectory A in figure I ) .  

Finally, in figure 3 ( d )  we present the power spectrum of I on a trajectory E in the 
chaotic region along the homoclinic connections in the 1 : 3 resonance. The qualitatively 
different features are obvious. The spectrum seems to be continuous but the most 
characteristic feature is the divergence at the low frequencies where a broad series of 
peaks of significant amplitude arises as the frequency tends to zero. This feature, which 
cannot appear in a regular orbit as has been shown in the preceding section, is peculiar 
to chaotic motion and is apparent in the spectrum of I along all chaotic regions 
independently of their width in the phase space. 

3.2. Three nonlinear coupled oscillafors 

Next we consider an extension of the Hamiltonian (16) in three degrees of freedom, 
as follows: 

(18) A 2 H = f (  p :  + p :  + p : )  +a(x +y)'  +- z2+a(x - ky)"+&z4 - EXYZ 
2 

which for k = 1 and E = 0 possesses two invariants, namely I ,  given by (17) and 

I ,  = p : +  A Z ~ + ~ Z ~ .  (19) 
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Figure 3. Power spectra with the same scale as in figure 2 for ( a )  a first-order island (E), 
( b )  a second-order island (C), ( e )  a twin chain (D) and ( d )  a chaotic trajectory (E) .  

We take k = 1 and we restrict ourselves to the effect of the perturbation &xyz2 on two 
regions of the phase space, first close to the periodic orbit of (16) and secondly to the 
region near the resonance 1 : 3. For the first case and for values of E up to 0.3 stochasticity 
has not been observed for A > 0. The trajectories seem to lie on invariant tori which 
persist for large perturbations. But for A < 0, where the motion in z becomes unstable, 
the spectra of I, and I ,  indicate the existence of chaotic motion for E > 0. In the second 
case chaotic motion appears also for A > O  when E becomes greater than 0.22 (figure 
4). In every case we selected as initial conditions for the vertical motion z=O.1 and 

The formation of a thin chaotic zone results in a remarkable change in the low 
band, in contrast to the region of high frequencies, the form of which seems to be 
more or less unaffected. In order to illustrate how the low band is affected we calculate 
the quantity P,,,, which is the power of the low-frequency band per total power of the 
spectrum. There is not a strict definition of the upper limit on this low band. For our 
case we consider as such & of ihe ioiai speciiniii. Iii Bgnie 3 the vaikiioii of this 
quantity with respect to the parameters of the Hamiltonian (18) is shown. For the case 
near the resonance 1 : 3, figure 5 ( a )  shows an abrupt increase of the low-band power 
for ~ = 0 . 2 2  where a transition from regular to chaotic motion occurs. The same 
behaviour is also observed in figure 5 ( b ) ,  which corresponds to initial conditions close 
to the periodic trajectory for E = 0.1. For A > 0, z exhibits oscillatory motion and the 
spectra of I, and I, for the tori in the region around the periodic orbit are characterized 
by a lack of significant peaks at low frequencies. These tori also persist for small 
negative values of A, but for A < -0.1 the instability which appears in the motion of 
z leads to the generation of chaotic motion. 

pz = 0. 
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t a l  
IO” 

10-1 

0.01 0. I n 0.001 

104 I 

0.WI 0.01 0.1 n 
Figure 4. Power spectra for a Hamiltonian with three degrees of  freedom with A = 0.5. ( a )  
For E = 0.15 the convergence of spectrum as n .+ 0 indicates the existence of  an invariant 
torus. ( b )  For E = 0.25 the spectrum does not converge tu zero as n-0, indicating chaotic 
motion. 

Thus the qualitative features of the low band of the spectrum of I, seem to be 
highly indicative for the distinction between regular and chaotic trajectories. The 
transition from one kind of motion to the other happens abruptly and from an 
exponential convergence we pass to a divergence such that P ( 0 )  levels off to a finite 
value at 0 = 0 and indicates a normal diffusion process characterized by a finite diffusion 
coefficient, or is similar to l / f  noise [ 131. These two different situations have been 
obtained in the cases examined above. For A > 0 (figure 4 ( a ) )  the spectrum seems to 
converge at a finite value as fl tends to zero but for A<O the phenomenon of llf 
noise is apparent (figure 6 ) .  

4. Conclusions 

The surface of section method provides a powerful tool for obtaining information 
about the nature of motion in Hamiltonian systems of two degrees of freedom and in 
these systems one can sharply distinguish between regular and chaotic motion. This 
method loses much of its strength when one considers systems of three degrees of 
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I 
0.1 E 0.2 0.3 

I 
-0.2 0.0 A 0.2 0.4 

Figure 5. The ratio of the power of the low band per total power. ( a )  For A = ;  versus E. 

( b )  For E = 0.1 versus A. An abrupt increase occurs at the transition from regularto chaotic 
motion. 

Figure 6. I//" noise, with a = 1.3, for a chaotic trajectory with A = -0.3 and E = 0.1. The 
spectrum has been averaged over 20 samples, each one having a length of 4096 paints. 
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freedom or more, since in these cases the corresponding section is at least four- 
dimensional. By computing the largest Lyapunov exponent one may still distinguish 
chaotic from regular motion, but this method is time-consuming and, in multi- 
dimensional systems, is affected by diffusion processes. 

In this paper spectral properties associated with the deformation of tori and the 
transition to chaos in near-integrable Hamiltonian systems have been studied. Our 
method is based on the spectral analysis of the integrals of motion of the integrable 
part along regular or chaotic trajectories in the perturbed system. A connection of their 
power spectrum to the small denominators of classical perturbation theory has been 
shown. Under some necessary conditions for the existence of invariant tori, an estima- 
tion of the low band of the spectrum has been obtained which illustrates the rapid 
convergence of the power spectrum to zero as 0. So quasiperiodic trajectories are 
distinguished from chaotic ones whose power spectrum is characterized by an irregular 
continuous distribution of significant peaks at low frequencies. 

air wmtanm 111 tne uriper~uroeu system, tne power spectrum 
implies information exclusively about the deformation of tori under the perturbation. 
This deformation is reflected by the number of spectral peaks and their position and 
amplitude. Tori near a significant resonance are strongly deformed and the power 
spectrum consists of a set of major peaks, in contrast to robust invariant tori which 
exhibit a neat spectrum with insignificant peaks at low frequencies. In the case of 
chaos the low band exhibits a completely different behaviour which is characterized 
by generation of an irregular continuous distribution of frequencies with amplitudes 
of the same order of magnitude as the major high-frequency peaks, or greater. 

The significance of the low band of the spectrum bas also been noticed by Ostlund 
et al [ l ,  21 for two-dimensional dissipative systems where the structure of the low 
band seems to be repeated through the whole spectrum and is universal. Similar 
properties may also be true for the power spectrum of the integrals I ,  since in both 
cases the construction of the spectrum is based on the integer combinations of the 
fundamental frequencies of the system. On the other hand, Geisel et a1 [ 13,141 showed 
that the trapping of chaotic orbits in a self-similar hierarchy of nested islands in 
Hamiltonian systems of two degrees of freedom may be responsible for the l/f" 
divergence in the low band of the spectrum of a dynamical variable on these orbits. 
Our results also indicate in some cases I /  f a divergence and it is an open question if 
this universai phenomenon j i6j  may be reiaied io chaos in iiamiiiuniaii sysi~iiis of 
more than two degrees of freedom. It is also worth noting the abrupt transition from 
the exponential convergence to the l/f" distribution. The expansion (9) of the power 
spectrum cannot provide an explanation for such a transition since the higher-order 
terms in this expansion diverge near resonances where chaotic motions occur. The 
slope a is related to the diffusion of the mean square displacement [14] but there are 
.!so some ather paim which need filrther investigationi for example the relation of 
the rate of divergence or the power of the low band to the largest Lyapunov exponent 
and the effect of diffusion processes on the power spectrum of I. Recent results by 
Sepjlveda ef a1 [27] show an apparent connection between the average exponential 
separation of orbits in the standard map and the continuous background of their 
spectrum. In our examples, such a continuous background is very evident in the low 
band of the spectrum for chaotic orbits, while there is no important qualitative change 
in the high-frequency band as we pass from a regular to a weakly chaotic orbit. 

As can be found from inequality (13), the exponential convergence of the spectrum 
is valid for n<n* where n* depends on the number n of degrees of freedom as 
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( n  + l)-("+", so that Cl* becomes very small for a large number of degrees of freedom. 
In this case, this exponential convergence cannot be detected and no information on 
the energy transport among the various degrees of freedom in a multidimensional 
system can be obtained (e.g. [28]). It would be interesting, however, to relate the 
divergence of the low band to the energy transport in a system of a few degrees of 
freedom (e.g. [291). 
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